Steroidogenesis inhibitors

A unique feature of Endocrinology is our focus on life-course consequences of endocrine and metabolic diseases from conception to old age, and their biological bases.  Clinical and research collaboration between paediatric and adult endocrinologists is delivering ground-breaking discoveries and an international patient referral base, providing access to unique patients and families. Our Discovery Science and Experimental Medicine successes include achieving major advances in understanding the nature and causes of Familial Pituitary Adenoma and identifying six novel genes causing Familial Glucocorticoid Deficiency, thereby providing new insights into the cellular processes regulating steroidogenesis. Adrenal and pituitary development, mitochondrial and stem cell physiology and intracellular trafficking are complementary ongoing research interests at Endocrinology, as is the study of novel genes underlying the timing of puberty, the risk of dyslipidemia and rare bone diseases. The translational aspects of our work are both inspired and supported by our clinical and basic research collaboration, which continues to serve us well in attracting high-quality clinical and non-clinical PhD students and more senior investigators to this truly international centre of excellence. 

Group X secretory phospholipase A2 (GX sPLA2) hydrolyzes mammalian cell membranes, liberating free fatty acids and lysophospholipids. GX sPLA2 is produced as a pro-enzyme (pro-GX sPLA2) that contains an N-terminal 11-amino acid propeptide ending in a dibasic motif, suggesting cleavage by a furin-like proprotein convertase (PC). Although propeptide cleavage is clearly required for enzymatic activity, the protease(s) responsible for pro-GX sPLA2 activation have not been identified. We previously reported that GX sPLA2 negatively regulates adrenal glucocorticoid production, likely by suppressing liver X receptor-mediated activation of steroidogenic acute regulatory protein expression. In this study, using a FLAG epitope-tagged pro-GX sPLA2 expression construct (FLAG-pro-GX sPLA2), we determined that adrenocorticotropic hormone (ACTH) enhanced FLAG-pro-GX sPLA2 processing and phospholipase activity secreted by Y1 adrenal cells. ACTH increased the expression of furin and PCSK6, but not other members of the PC family, in Y1 cells. Overexpression of furin and PCSK6 in HEK 293 cells significantly enhanced FLAG-pro-GX sPLA2 processing, whereas siRNA-mediated knockdown of both PCs almost completely abolished FLAG-pro-GX sPLA2 processing in Y1 cells. Expression of either furin or PCSK6 enhanced the ability of GX sPLA2 to suppress liver X receptor reporter activity. The PC inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone significantly suppressed FLAG-pro-GX sPLA2 processing and sPLA2 activity in Y1 cells, and it significantly attenuated GX sPLA2-dependent inhibition of steroidogenic acute regulatory protein expression and progesterone production. These findings provide strong evidence that pro-GX sPLA2 is a substrate for furin and PCSK6 proteolytic processing and define a novel mechanism for regulating corticosteroid production in adrenal cells.

Wnt/β-catenin (βcat) signaling is critical for adrenal homeostasis. To elucidate how Wnt/βcat signaling elicits homeostatic maintenance of the adrenal cortex, we characterized the identity of the adrenocortical Wnt-responsive population. We find that Wnt-responsive cells consist of sonic hedgehog (Shh)-producing adrenocortical progenitors and differentiated, steroidogenic cells of the zona glomerulosa, but not the zona fasciculata and rarely cells that are actively proliferating. To determine potential direct inhibitory effects of βcat signaling on zona fasciculata-associated steroidogenesis, we used the mouse ATCL7 adrenocortical cell line that serves as a model system of glucocorticoid-producing fasciculata cells. Stimulation of βcat signaling caused decreased corticosterone release consistent with the observed reduced transcription of steroidogenic genes Cyp11a1, Cyp11b1, Star, and Mc2r. Decreased steroidogenic gene expression was correlated with diminished steroidogenic factor 1 (Sf1; Nr5a1) expression and occupancy on steroidogenic promoters. Additionally, βcat signaling suppressed the ability of Sf1 to transactivate steroidogenic promoters independent of changes in Sf1 expression level. To investigate Sf1-independent effects of βcat on steroidogenesis, we used Affymetrix gene expression profiling of Wnt-responsive cells in vivo and in vitro. One candidate gene identified, Ccdc80, encodes a secreted protein with unknown signaling mechanisms. We report that Ccdc80 is a novel βcat-regulated gene in adrenocortical cells. Treatment of adrenocortical cells with media containing secreted Ccdc80 partially phenocopies βcat-induced suppression of steroidogenesis, albeit through an Sf1-independent mechanism. This study reveals multiple mechanisms of βcat-mediated suppression of steroidogenesis and suggests that Wnt/βcat signaling may regulate adrenal homeostasis by inhibiting fasciculata differentiation and promoting the undifferentiated state of progenitor cells.

Steroidogenesis inhibitors

steroidogenesis inhibitors

Media:

steroidogenesis inhibitorssteroidogenesis inhibitorssteroidogenesis inhibitorssteroidogenesis inhibitorssteroidogenesis inhibitors