Steroid induced atrophy in an animal and human model

The most commonly used AAS in medicine are testosterone and its various esters (but most commonly testosterone undecanoate , testosterone enanthate , testosterone cypionate , and testosterone propionate ), [53] nandrolone esters (most commonly nandrolone decanoate and nandrolone phenylpropionate ), stanozolol , and metandienone (methandrostenolone). [1] Others also available and used commonly but to a lesser extent include methyltestosterone , oxandrolone , mesterolone , and oxymetholone , as well as drostanolone propionate , metenolone (methylandrostenolone), and fluoxymesterone . [1] Dihydrotestosterone (DHT; androstanolone, stanolone) and its esters are also notable, although they are not widely used in medicine. [54] Boldenone undecylenate and trenbolone acetate are used in veterinary medicine . [1]

The most common side effect of topical corticosteroid use is skin atrophy. All topical steroids can induce atrophy, but higher potency steroids, occlusion, thinner skin, and older patient age increase the risk. The face, the backs of the hands, and intertriginous areas are particularly susceptible. Resolution often occurs after discontinuing use of these agents, but it may take months. Concurrent use of topical tretinoin (Retin-A) % may reduce the incidence of atrophy from chronic steroid applications. 30 Other side effects from topical steroids include permanent dermal atrophy, telangiectasia, and striae.

Common (1% to 10%): Sinusitis, nasopharyngitis, upper respiratory tract infection, bronchitis
Uncommon (% to 1%): Cough, dyspnea, snoring, dysphonia
Rare (less than %): Pulmonary microembolism (POME) (cough, dyspnea, malaise, hyperhidrosis, chest pain, dizziness, paresthesia, or syncope) caused by oily solutions
Frequency not reported: Sleep apnea
Postmarketing reports: Chest pain, asthma, chronic obstructive pulmonary disease, hyperventilation, obstructive airway disorder, pharyngeal edema, pharyngolaryngeal pain, pulmonary embolism, respiratory distress, rhinitis, sleep apnea syndrome [ Ref ]

Cells of the zona fasciculata and zona reticularis lack aldosterone synthase (CYP11B2) that converts corticosterone to aldosterone, and thus these tissues produce only the weak mineralocorticoid corticosterone. However, both these zones do contain the CYP17A1 missing in zona glomerulosa and thus produce the major glucocorticoid, cortisol. Zona fasciculata and zona reticularis cells also contain CYP17A1, whose 17,20-lyase activity is responsible for producing the androgens, dehydroepiandosterone (DHEA) and androstenedione. Thus, fasciculata and reticularis cells can make corticosteroids and the adrenal androgens, but not aldosterone.

Steroid induced atrophy in an animal and human model

steroid induced atrophy in an animal and human model

Cells of the zona fasciculata and zona reticularis lack aldosterone synthase (CYP11B2) that converts corticosterone to aldosterone, and thus these tissues produce only the weak mineralocorticoid corticosterone. However, both these zones do contain the CYP17A1 missing in zona glomerulosa and thus produce the major glucocorticoid, cortisol. Zona fasciculata and zona reticularis cells also contain CYP17A1, whose 17,20-lyase activity is responsible for producing the androgens, dehydroepiandosterone (DHEA) and androstenedione. Thus, fasciculata and reticularis cells can make corticosteroids and the adrenal androgens, but not aldosterone.

Media:

steroid induced atrophy in an animal and human modelsteroid induced atrophy in an animal and human modelsteroid induced atrophy in an animal and human modelsteroid induced atrophy in an animal and human modelsteroid induced atrophy in an animal and human model

http://buy-steroids.org